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Using rigorous wave-optical formalism, a general expression is obtained for the
image intensity distribution in combined analyser-based/propagation-based
phase-contrast imaging. This expression takes into account partial coherence of
the wave incident on the object as well as the finite resolution of the detector
system. Using this general expression, two approaches based on the geometrical
optics and weak-object approximations are applied to derive simple solutions to
the inverse problem of reconstruction of the phase and amplitude of the object
wave. With the help of numerical experiments, the two approaches are
compared in terms of their validity conditions and are shown to impose certain
restrictions on the properties of the object wave. In particular, it is shown that
violation of the validity conditions of the geometrical optics or weak-object
approximations results in the appearance of strong reconstruction artefacts in
the transmitted intensity near the edges of the objects. The effect of the incident
wavefront non-uniformity due to imperfections of the imaging set-up on image
formation and phase/amplitude reconstruction is also discussed. A solution to
this problem is proposed in the form of a multi-image phase/amplitude
reconstruction algorithm based on the geometrical optics approximation. This
algorithm and an algorithm based on the weak-object approximation are applied
to simulated and experimental images of fibres.

1. Introduction

In recent years, a number of X-ray phase-contrast imaging
methods have been developed using laboratory sources and
synchrotrons (Fitzgerald, 2000). The success of these imaging
methods can be explained by the fact that for objects
consisting of low-Z elements and for high X-ray energies the
attenuation properties of the objects are almost uniform,
which results in a very weak contrast in conventional
absorption images. At the same time, the phase modulations of
the wave transmitted through the objects are several orders of
magnitude larger compared with the attenuation modulations
and can potentially produce a relatively high contrast in the
images if an appropriate phase-sensitive optical configuration
is used. One such optical configuration (called analyser-based
imaging, or ABI) utilizes a perfect flat crystal placed after the
object (Forster et al., 1980; Somenkov et al., 1991; Ingal et al.,
1994, 1995; Ingal & Beliaevskaya, 1995; Davis et al., 1995a,b).
The phase modulations induced by the object cause small (of
the order of a microradian) local deviations of the propagation
direction of the wave transmitted through the object. The
analyser crystal, whose reflectivity curve has typical FWHM of
the order of several microradians, is very sensitive to these

small deviations of the object wave. The diffraction of the
object wave in the analyser crystal results in spatial modula-
tion of the reflected intensity. These spatial intensity modu-
lations are registered in the image plane by a position-
sensitive detector.

The spatial intensity modulations in the images obtained in
the ABI regime differ from the spatial modulations of the
phase in the object wave. In general, the relationship between
those two is quite complicated and the images do not directly
resemble the phase distribution. In order to obtain the phase
distribution in the object wave, an appropriate processing of
the collected images is necessary. This phase reconstruction
procedure presents an example of the inverse problem that is
non-trivial and hard to solve in the general case. However,
using some a priori information about the object (for example,
characteristic length scale and magnitude of the modulations
of refractive index), the relationship between the image
intensity and phase distribution can be simplified allowing one
to solve the reconstruction problem using an appropriate
algorithm.

Most of the algorithms developed so far for the extraction
of the phase and amplitude information of the object wave
from the analyser-based phase-contrast images (see, for
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example, Chapman et al, 1997; Bushuev & Sergeev, 1999;
Bushuev et al., 2002; Oltulu et al., 2003; Pagot et al., 2003;
Rigon et al., 2003; Wernick et al., 2003) are based on the
geometrical optics approximation, which relates in a simple
way the intensity 7,,(x, y) of the wave reflected by the analyser
crystal, characterized by the rocking curve R(w), with the
phase derivative d.¢(x,y) and intensity /y(x,y) of the wave
incident on the analyser crystal (Indenbom & Chukhovskii,
1972; Bushuev et al., 1996, 1998; Gureyev & Wilkins, 1997),

L(=x, y; @) = Ij(x, y)R(w + k7' 8,0(x, ),

where k is the wavenumber. This approximation is valid if the
phase of the wave incident on the analyser crystal is a slowly
varying function on the length scale of the extinction length of
the analyser crystal (Gureyev & Wilkins, 1997; Bushuev et al.,
1998). A similar criterion was obtained by Pavlov et al. (2004)
for the case of a monochromatic plane wave incident on the
object. By analogy with the case of propagation-based imaging
(where the geometrical optics approximation is valid for large
Fresnel numbers), the criterion was formulated as the
requirement for large values of the Takagi number,

Ny = (b2 1Hw)/F ()],

where r(w) is the analyser’s amplitude reflection coefficient as
a function of the angular deviation w of the angle of incidence
from the exact Bragg angle, A is the X-ray wavelength and 4 is
the size of the smallest feature in the object, or the resolution
limit of the imaging system, whichever is larger. Condition
N7 > 1is usually violated at the edges of strong phase objects
where the curvature of the induced phase is large, and this
results in poor reconstruction of the phase. As we show in the
present paper, this factor has to be taken into account when
methods based on the geometrical optics approximation are
used for the phase/amplitude reconstruction.
Phase/amplitude reconstruction in ABI is significantly
complicated by the fact that the wave incident onto the object
is usually non-flat. This non-flatness originates from the
optical elements of the imaging beamline due to: (i) non-
uniformity of the thickness of the X-ray filters and beryllium
windows; (ii) deformations of the monochromator crystals due
to significant heat load and gravitation; (iii) use of bent crys-
tals and mirrors in monochromators (e.g. in the Laue
geometry in order to enlarge the bandpass) and focusing
optics. Additional wavefront distortions can also occur due to
aberrations of the optical elements placed after the object, for
example, the analyser crystal and the X-ray/visible-light
convertors in the detecting systems. The transverse distribu-
tion of the intensity in the wave incident on the object is also
non-uniform, mainly due to the angular inhomogeneity of the
radiation of the relativistic electrons in the storage ring. These
two factors result, in particular, in the non-uniform flat-field
images (i.e. images collected without an object). Moreover,
correction of the images of the object for the incident wave-
front curvature cannot be performed by a simple division of
the images by the corresponding flat-field images. This is
because the non-flatness of the incident wavefront effectively
means that different parts of the image correspond to different

deviations of the analyser crystal from the exact Bragg angle
even if we assume the analyser crystal to be ideally flat and
homogeneous.

In recent years, attempts have been made to separate
various contrast mechanisms in the ABI. These mechanisms
include refraction contrast arising due to the phase modula-
tion of the wave transmitted through an object, absorption
contrast due to attenuation of the X-rays in the object and the
so-called ‘extinction’ contrast, which is just a result of the
filtering properties of the analyser crystal, which does not
reflect X-rays incident on the analyser at the angles outside its
narrow reflectivity curve. It is worth mentioning that the idea
proposed by Ingal et al. (1994, 1995) regarding the use of a pair
of images collected at opposite slopes of the rocking curve of
the analyser crystal for producing new images was later
successfully implemented in the diffraction-enhanced imaging
(DEI) algorithm by Chapman and co-workers (Chapman et
al., 1997). This algorithm allows one to separate refraction
contrast from the sum of absorption and ‘extinction’ contrasts.
A lot of effort has been undertaken subsequently in order to
separate the true absorption from the ‘extinction’ contrast.
The latter is usually attributed to the small-angle X-ray scat-
tering (SAXS) at the sharp edges of the features present in the
object. Several approaches have been suggested to this end,
two of which, multiple-image radiography (MIR) (Wernick et
al.,2003) and an approach suggested by Pagot ez al. (2003), are
very similar in their experimental implementations, involving
the measurement of a series of images corresponding to
different deviation angles of the analyser covering its rocking
curve, but differ in the subsequent analysis of the images. The
main idea of the MIR approach consists of computation of
multiple parametric images of the object from multiple
acquired images. These parametric images are calculated from
the deconvolved angular distributions of the scattered inten-
sity in each pixel of the object and include the integrated
intensity, the refraction angle and the width of the SAXS
intensity distribution. The same parametric images as well as
the ‘maximum absorption’ one are calculated by Pagot et al.
(2003) by a simple calculation of the moments of the angular
distributions of the intensity at each pixel in the image plane.
Another approach to the solution of the same problem of
separating absorption contrast from ultra-small-angle scat-
tering has been formulated by Rigon et al. (2003) and consists
of the measurement of two images corresponding respectively
to the top and one of the tails of the rocking curve. We should
emphasize here that all these methods are based on the
geometric optics approximation and therefore are restricted to
the objects satisfying the condition Ny > 1 (Pavlov et al.,
2004).

The present paper is arranged as follows. In §2, we derive a
general expression for the intensity distribution in the images
obtained in the combined analyser-based/propagation-based
phase-contrast imaging using a finite spatially incoherent
polychromatic X-ray source and finite resolution detector.
This general expression is then simplified by using two
approaches, based respectively on the geometrical optics
approximation and on the weak-phase-object approximation.
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The validity conditions for the two approximations are also
obtained. These two approaches are compared in §3 using
numerical simulation of the ABI images of simple test objects
(cylinders) and reconstruction of the phase of the object wave
from these images. §4 is dedicated to the introduction of a new
multi-image phase/amplitude reconstruction technique based
on the geometrical optics approximation. This approach is
applied to both the simulated and the experimental images of
fibres. Conditions of applicability of this method are also
discussed.

2. General formalism

2.1. General expression for quasi-monochromatic analyser-
based/propagation-based phase-contrast imaging

We perform analysis of the ABI for the imaging config-
uration presented in Fig. 1, consisting of a polychromatic
X-ray source (S), a double-crystal monochromator (M), an
object (O), a single-crystal analyser (A) and a detector (D).
We consider the case of symmetric reflections in all three
crystals. In this case, the complex amplitude Ep of the wave
created by a monochromatic point source located at a point x,
of the source plane is expressed in the detector plane via
transmission function g(x) of the object and point-spread
functions of the imaging set-up before and after the object,
G,(x) and G,(x), respectively, as follows (Nesterets et al.,
2005):

Ep(—xi30, ) = | 0¥ Gy = 0)a)Gr — ). (1)

We restrict our consideration to the one-dimensional case.
Generalization to the two-dimensional case is straightforward.
Equation (1) can be presented in the equivalent form

Ep(—x; x5, 1) = +foo +foo dudU exp(2miux,) exp[—2mi(u + U)x]
x G wa(U)G,(u+ V), @)

where hereafter f(u) denotes the Fourier transform of the
function f(x), f(u) = fj;o dx exp(2miux)f(x). The transfer
functions of the imaging set-up before and after the object
have the following form (Nesterets et al., 2005):

o) z3

Figure 1
Schematic representation of the analyser-based/propagation-based
phase-contrast imaging set-up used in the paper. S X-ray source, M
double-crystal monochromator, O object, A single-crystal analyser and D
detector.

Gb(u) = exp(—ir{)»zlzuz)rl(a)1 — Ary(w, — Au), 3)

Ga(”) = exp(—inkz34u2)r3(a)3 — Au),

where r; denotes the amplitude reflection coefficient of the ith
crystal and w; is the angular deviation of the ith crystal from
the exact Bragg angle, z1, = z; + 2, and z34 = z3 + z4 are the
source-to-object and object-to-detector distance, respectively.

We are interested in the expression for the intensity in the
image plane that takes into account the spectral and spatial
intensity distribution of the source expressed by the intensity
distribution function S(x,A) and the detector’s resolution
expressed by the point spread function D(x). As in our earlier
paper (Nesterets et al., 2005), we shall assume that the spectral
distribution is the same for all points of the source (so that the
intensity distribution function S can be factorized into the
spatial and spectral intensity distribution functions) and the
spectral interval that makes a contribution to the resultant
image is very small, [\ — Ao]/Ao is of the order of 107> or
smaller, so that:

1. the intensity distribution function of the source is almost
wavelength independent within this spectral interval (in the
vicinity of an average wavelength Ay) and can be written as
S(x7 )"0)5

2. the object transmission function can be considered
wavelength independent and calculated at the average wave-
length Ao (thus anomalous-dispersion effects near absorption
edges are excluded from further consideration);

3. free-space propagation can be considered wavelength
independent and calculated at the average wavelength A;

4. dispersion formula r(w; A) >~ r(w — [A — Ao]/Ag tan Op; Xo)
(see, for example, Pinsker, 1978; Nesterets et al., 2005) can be
used for the crystals (it is assumed that the whole spectral
interval contributing to the resultant image is far from the
absorption edges of the material of the crystals).

Under the conditions formulated above, calculations similar
to those in Nesterets et al. (2005) result in the following
expression for the intensity distribution in the image plane,
integrated over the wavelength and source size and convolved
with the detector point-spread function (PSF),

Iy (—Myx) = 70 70 dUdV exp[—27i(U — V)x]g(U)g*(V)

—00 —00

x G(U, V), “)

where we have introduced the transfer function of the imaging
system,

G(U, V) = 2t S(—[1 — (1I/M)][U — V1, 2)D([U — V1/M)
X exp[—imhyZ (U* — V?)]
x Q(~[1 — (1/M)][U — V], U, V), )

and the transfer function of the monochromator-analyser
subsystem,
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+00
Q(u, U, V) = cotty f déri(w; + & — Awry(w, +& — Agu)

X ry(w5 + & — Aou — U)ri(w; + &)
x 13 (@, +Eri(w; + & — A V). (6)

Here 7., = 212 + z34 is the total source-to-detector distance,
M = 7, /z1 is the magnification and z" = z34/M is the effective
object-to-detector free-space propagation distance.

We should emphasize that so far we have not imposed any
restrictions on the object transmission function (except for the
wavelength independence). Equation (4) presents a solution
of the direct problem of finding the intensity distribution in
the images if an object transmission function is known.
Inversion of this equation with respect to the object trans-
mission function is not trivial and cannot in general be
presented in a simple analytical form. In order to proceed
further and simplify equation (4), some assumptions regarding
the object transmission function (or the system transfer
function) have to be made.

2.2. Geometrical optics approximation and its validity
conditions

Let the transmission function of the object vary slowly
compared to the point spread function G(x) of the imaging
system (the corresponding width of the Fourier transform of
the former is small compared to the characteristic length scale
of the variations of the system transfer function) so that the
transfer function of the imaging system can be approximated
by the following finite Taylor series:

G(U, V)~ G(0,0) + Ud, G0, 0) + V3, G(0, 0)
+1U282,G(0,0) + UV, G(0,0)
+1v28,,G(0, 0). (7)

Before proceeding further, we make additional simplifying
assumptions. First, we shall assume that the source-to-object
distance z;, is much larger than the object-to-detector distance
Z34 SO that magnification is close to unity, M = 1, which means
that a plane wave is incident on the object. Second, we shall
assume the detector to be perfect (with §-function-like reso-
lution). These assumptions lead to the following expression
for the transfer function of the imaging system:

G(U, V) 22 251 S(ho) expl—imtagz3,(U* — VH]Q(0, U, V), (8)

where S(X() now represents the total intensity of the source at
wavelength A,.

Substituting equations (7) and (8) into equation (4) and
neglecting the terms proportional to the second and higher
powers of k', the following result for the intensity in the
image plane is obtained:

Ip(—=x) = [(x)R(w,, 0,, w; + kilfp,(x))
X {1 — k' z3,[0" (x) + ¢ () I(x) /15(x)]

R(0, w,, 0y + k' ¢/(x)) } )

1y
+ k7 Io(x)/Iy(x) R(w,, 0y, 05 + k-1g/(x))

where Ij(x) and ¢(x) are the intensity and the phase of the
wave incident on the analyser,

+o00
R(w;, @,, w3) = cot by f dé |ry(@; + &)ry(w, + Ers(w; + &)
is the integral reflectivity of the monochromator-analyser
subsystem and

+o0
R(@,, @,, w3) = cot by f dé |ry(w; + &)ry(w, + )

—00

x Im{r;(w; + §)r3(w; + ).

This result closely resembles equation (8) in Pavlov et al
(2004) but unlike the latter, which has been obtained under
the assumption of a monochromatic plane wave incident on
the object, equation (9) is valid for the incident quasimono-
chromatic plane wave. In the case of negligibly small object-to-
detector distance z34 and weakly absorbing object, the second
and the third terms in the curly brackets of equation (9) can be
omitted,

Ip(—x) = Ij(X)R(w;, @,, w3 + kil(/’b‘))- (10)

Equation (10) has the well known form of the geometrical
optics (GO) approximation obtained (Bushuev et al., 1996,
1998; Gureyev & Wilkins, 1997) for a plane monochromatic
incident wave. To the best of our knowledge, equation (10) for
the analyser-based image intensity in the GO approximation
in the case of a quasimonochromatic incident wave has not
been previously rigorously derived, although it was used in a
number of published experimental works. We apply this
equation later in the paper for solution of the ABI phase-
retrieval problem.

We now turn our attention to the formulation of the validity
conditions. It was suggested by Pavlov et al. (2004) that the
validity condition for the geometrical optics approximation
can be formulated as the requirement for the Takagi number
to be large, Ny > 1. In the case of a monochromatic
plane wave incident on the object, the Takagi number
has the following simple form (Pavlov et al, 2004):
Ny = (h/A)?|r(w)/7'(w)|. In the case of a quasimonochromatic
plane wave incident on the object, the corresponding validity
condition for the geometrical optics approximation can be
written as follows:

q"(x)
q(x)
q'(x)
q(x)

Inequality (11) can be interpreted as a simultaneous restric-
tion on the curvature of the transfer function of the imaging

)

(2m)’G(0, 0) max ! { ‘B%JUG(U’ V)‘ y=o Max

v=0 *

2
)a@VG(U, V)‘U:()max }>> 1. (1)
v=0 *
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set-up and on the smoothness of the object transmission
function.

2.3. ‘Weak-object’ approximation

In order to proceed further, we present equation (4) in the
following equivalent form:

+00 +00

I(—Mx)= [ [ dXdY q(x — X)g*(x — Y)G(X,Y), (12)
where
GX,Y) = 70 +foo dUdV exp[—27i(UX — VY)]G(U, V).

(13)

The object complex transmission function ¢(x) can be
expressed via the real phase function ¢(x) and attenuation
function p(x) as follows:

(14)

Assuming that the attenuation due to the object is weak, i.e.
|i(x)] < 1, and that the phase is either weak or slowly varying
on the characteristic length scale of the system (PSF, G), the
product of the two shifted object transmission functions in
equation (12) can be presented in the following form:

q(x) = explip(x) — pu(x)].

qg(x — X)g"(x = Y) = 1 + i{p(x — X) — (x — Y)}
— ulx —X) — p(x = Y).

p
+2.8"
+5.6"

—— 484" i

Phase, rad

0.8 '

This expansion results in the following solution for the Fourier
transform of the intensity distribution in the image plane (see
Nesterets et al., 2005, for details):

M7 Ip(—u/M) 2 GO)3(u) — 2{e@)G" () + AWIGT W),
(15)

where [G']" and [G]" are respectively the amplitude and
phase transfer functions and are expressed via the system
transfer function as follows (Nesterets et al., 2005):

[G'1"(w) = 1[G(u, 0) + G*(—u, 0)],
[GT"(u) = £[G(u, 0) — G*(~u, 0)].

Equation (15) represents the ‘weak-object’” (WO) approxi-
mation and is linear with respect to the phase and amplitude of
the object wave. The WO approximation is used below for
solution of the phase-retrieval problem in ABI.

3. Numerical results and quantitative comparison of
GO and WO approaches to ABI

3.1. Aberration-free optical system

The main problem that usually arises when implementing a
reconstruction method is the assessment of the reconstruction
error. This problem occurs due to the lack of prior information
about an object whose transmission function is reconstructed
using experimental data. As a result, a direct comparison of
the reconstructed and actual parameters of the object
becomes problematic. The problem can be resolved if

Phase, rad

2100 0 200

X, pm

{a)

0.4 '
=300 =200 100 300

1.08+
1.064
1.04
hh_.n_l.OZ-

= 1.004

Phase, rad

0.984

0.96+
|

1.0

0.8

0.6

0.4

Phase, rad

0.2

0.0

T 00 -100

00 0

“300 200 -300

=200

X, pm

(b) (d)

Figure 2

0

X, pm

=100 0 100 200 300

X, pm

(f)

100 200 300 2300 200

Intensity cross sections of the images of (a) a Nylon fibre of 350 pm diameter in vacuum, object 1, and of (b) a Perspex fibre of 350 pm diameter in water,
object 2, calculated under the assumption of an incident quasimonochromatic plane wave at different angular deviations of the analyser. Symmetrical
Si(111) reflections for all the crystals and o-polarized X-radiation of average energy 25 keV were used in the calculations. Results of the phase
reconstruction of object 1 and object 2 using the weak-object approximation, (¢) and (d), respectively, and the geometrical optics approximation, (e) and

(f), respectively.
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numerically simulated images of a model object are used for
testing of the reconstruction method.

We calculated intensity profiles for two cylindrical objects
(object 1: nylon wire of 350 um diameter and 0.93 g cm >
density in vacuum; and object 2: perspex wire of 350 um
diameter and 1.19 g cm > density in water) for 13 positions of
the analyser crystal with angular step 2.8 prad. We assumed
25 keV average energy of the polychromatic source of X-rays
and symmetrical 111 reflections in the double-crystal mono-
chromator and single-crystal analyser in our calculations. At
the chosen energy, the maximum phase shift and intensity
attenuation due to the object were —15 rad and 1%, respec-
tively, for object 1. For object 2, the maximum phase shift and
intensity gain (negative attenuation compared to the equiva-
lent propagation in water) were +1 rad and 2.02%, respec-
tively. In order to model finite detector resolution, the
calculated intensity profiles were convolved with a Gaussian
distribution with standard deviation of 15 pm. The resultant
intensity profiles for the zero and positive deviations of the
analyser normalized to the corresponding flat fields are shown
in Figs. 2(a) and 2(b) corresponding to object 1 and object 2,
respectively.

First, the phase reconstruction algorithm developed by
Nesterets et al. (2004) for a homogeneous object and based on
the weak-object approximation was applied to the intensity
profiles in Figs. 2(a) and 2(b) and the results of the recon-
structions are presented in Figs. 2(c) and 2(d), respectively. We
should emphasize that a single image recorded at an arbitrary
deviation angle of the analyser is used in this algorithm. As
can be seen in Fig. 2(c), the quality of the reconstruction of the
phase of object 1 strongly depends on the analyser deviation
angle. For example, for values of this angle of +2.8, +5.6 and
+8.4 prad, the quality of the reconstruction is quite satisfac-
tory although there is a small asymmetry in the profiles of the
reconstructed phase and the maximum phase shifts are smaller
than the exact value. For larger deviation angles, the recon-
structed phase profiles reveal strong asymmetry and the
maximum phase shifts are overestimated. For object 2 whose
transmission function is characterized by a much smaller
maximum phase shift (although the same geometrical
parameters), the quality of the phase reconstruction is quite
good and is almost independent of the analyser deviation
angle (see Fig. 2d).

The results of the phase reconstruction using an algorithm
based on equation (10) (note that we consider a pure analyser-
based imaging in this section and the absorption is weak) are
presented in Figs. 2(e) and 2(f). Considering Fig. 2(e), we
should mention that, similarly to the case of the reconstruction
using the weak-object approach, the quality of the GO phase
reconstruction also strongly depends on the analyser deviation
angle and the tendency is the same as in the former case.
However, the phase profiles look different compared to those
in Fig. 2(c). In the case of object 2 (see Fig. 2f), the recon-
structed phase profiles corresponding to deviation angles of
+2.8, +5.6 and +8.4 prad almost coincide with the exact profile
used for the simulations of the ABI intensity profiles.
However, for the deviation angle +11.2 prad, the result of the

phase reconstruction differs significantly from the exact phase.
For the larger deviation angle, +14 prad, the result of the
phase reconstruction is much better although it is still worse
compared to the results corresponding to the first three angles.

The behaviour of the phase reconstruction quality in the
GO approximation can be understood from the comparison of
the values of the left-hand side (l.h.s.) of equation (11)
corresponding to the two objects and different deviation
angles of the analyser.

In order to evaluate the lLh.s. of equation (11) for the
cylindrical object, the following considerations were taken
into account. We used a 0.5 um step in the sampling of the
object transmission function in our simulations. This finite
sampling imposes certain limitations on the first and second
derivatives of the object transmission function g. For simpli-
city, we restrict our analysis to the case of a pure phase object.
In this case, we can present the transmission function deriv-
atives in equation (11) as follows:

[¢(x)/q@)F = ~[¢/ )P and ¢"(x)/q(x) = ig"(x) = [¢/ ()]

The maxima of the first and second derivatives of the phase
function are expected at the edges of the cylinder where the
phase can be approximated by the following expression:

,/zAx 0< Ax < R
(p(Ax)% () Rv < Ax <R,

0, Ax <O.

Here Ax is the distance from the edge towards the centre of
the cylinder, R is the radius of the cylinder and ¢, is the
maximum phase shift due to the cylinder. At the left edge of
the cylinder, the first and second derivatives of the phase take
the following form:

Ax\ /2
ﬂ(z—x) . 0<Ax <R,

P(x) =¢'(Ax) = 1 2Ax \" R
0, Ax <0.
@0 Ax\'"?
0, Ax <0.

The maximum increase of the phase on the length of the
sampling step 4 is A@max = @(h) = @o(2h/R)"*. The corre-
sponding maximum values of the first and second derivatives
are @lmax = (ﬂ/(h) = A‘pmax/(zh) and w//max = ‘P,/(h) =
— A@uma/(2h)’.

Numerical values for the derivatives of the object trans-
mission function for both test objects are summarized in Table
1. Table 2 contains information on the transfer-function
derivatives and the corresponding numerical values of the
Lh.s. of equation (11) for object 1 and object 2 for different
deviations of the analyser crystal. We should emphasize here
that the only difference between the two objects is the
maximum phase shift ¢,. All other parameters are the same.

3.2. Effect of the incident wavefront curvature

So far we have considered the case of a plane wavefront
incident on the object. In a real experiment, this wavefront is
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Table 1

Characteristics of the objects used in the numerical simulations.

Table 2

Values of the transfer-function derivatives and the corresponding values
of the Lh.s. of equation (11).

o A@rmax max |g'/q|* max | ¢"'/q] - .
(rad) (rad) (um™2) (pm?) s (wrad)  |8,G/G| (um®) |8, G/G| (um®)  Object1  Object 2
Object 1 —15 —1.14 1.30 1.73 0 0.27x10° 0.15x10° 0.08 1.9
Object 2 +1 0.076 0.0058 0.076 2.8 0.15x10° 0.13x10° 0.15 33
5.6 0.17x10° 0.14x10° 0.14 3.1
8.4 0.20x10° 0.17x10° 0.11 25
112 0.30x10° 0.24x10° 0.07 1.7
14.0 0.11x10° 0.10x10% 0.20 45

usually non-flat. We should emphasize that this non-flatness is
in general different from the spherical wavefront assumed for
each monochromatic wave radiated by a point source (see
§2.1). The latter was effectively taken into account by means of
the appropriate choice of the transfer functions in equation
(3). Moreover, integration of the image intensity over the
wavelength resulted in the general equation (4) in which the
sphericity of the wave radiated by a point source leads to the
appearance of the additional terms in the arguments of the
amplitude reflection coefficients in equation (6). These terms
are explicitly described by magnification M which char-
acterizes quantitatively the sphericity of the incident wave-
front.

Another source of non-flatness of the wavefront of the wave
incident on the object is related to the imperfections of the
imaging system. These imperfections may include the non-
uniformity and thickness variations of various optical
elements in the imaging system as well as possible curvature of
the crystals in the monochromator and analyser which are
assumed to be flat (in the following, we assume that the
detector is perfect, in the sense that it does not introduce
wavefront aberrations). As we have already mentioned in the
Introduction, this type of wavefront curvature cannot be
corrected for by a simple division of the images of the object
by the corresponding flat-field images. This can only
compensate the transverse non-uniformity of the intensity in
the wave incident on the object but not the wavefront
curvature. The curvature results in the different local devia-
tion angles of the analyser crystal at different points in the
image. The spread of these angles is defined by the curvature
of the wavefront and the field of view and can be large. This
fact complicates significantly the phase reconstruction using
both the weak-object and geometrical optics approximations.

The main difficulty with the weak-object approximation is
that the optical system can no longer be considered as shift
invariant and this results in the failure of the main expression
of this approximation, equation (15). In the case of a slowly
varying ‘aberration’ phase ¢, in the incident wave (so that the
geometrical optics approximation is valid for the incident
wave), we can express the intensity distribution in the image
I(x,y; w) formed by a non-flat incident wave via the corre-
sponding image /,,(x, y; ) corresponding to the plane incident
wave as follows:

I(x7 yv (1)) = pl('xv y’ (] + kilax(p()(x’ y))’ (16)

where w is the analyser deviation angle defined for the plane
incident wave. Equation (15) is valid for the intensity
Ii(x, y; ) but is invalid for the intensity I(x, y; w). At least two

approaches can be suggested in order to overcome this
problem.

First, if the phase ¢, of the incident wave is known a priori
and the range of deflection angles 6 = k™ 'd,¢, in the incident
wave is small compared to the analyser’s rocking-curve width
(slowly varying phase ¢, and/or small field of view), then the
following approach can be used. Equation (16) can be
presented as

Ipl(xv ys 0)) = I(xv ys CL)) - 9(x7 y)awlpl(x’ ys w) (17)

Given only one image of an object (one image is enough for
reconstruction of the phase of a homogeneous object), equa-
tion (17) can be solved iteratively. At the first iteration, the
second term on the right-hand side (r.h.s.) is neglected and the
zeroth approximation for the object’s phase is found. Using
this phase, the intensity derivative is calculated numerically
and thus a correction [the second term on the r.h.s. of equation
(17)] for the non-flatness is found. At the second iteration, the
corrected image is used for the phase reconstruction. The
iterative procedure is stopped when convergence of the phase
is achieved.

The second approach is based on a series of images for the
analyser deviation angles covering the total range of incident-
wave deflection angles. The phase of the incident wave is
assumed to be known. Equation (16) can be rewritten in the
alternative form

Ly(x, y; @) 2 1(x, yi 0 — k7' 3,9 (x, ). (18)

Using an appropriate interpolation algorithm, the image
corresponding to the plane incident wave is first reconstructed.
This image is then used for the phase reconstruction based on
equation (15).

Strictly speaking, the validity of both suggested approaches
depends not only on the slowness of the phase of the incident
wave but also on the object under investigation. The
smoothness of the image intensity as a function of the analyser
deviation angle was implicitly assumed in both approaches.
This in its turn imposes some (unknown) restrictions on the
object transmission function and the transfer function of the
system.

We now turn our attention to the same problem in the
geometrical optics approximation. The main difficulty in the
application of this approach to the phase reconstruction is a
possible non-uniqueness of the solution. The latter arises in
the case when both sides of the analyser’s rocking curve
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contribute to the formation of the image. Then some addi-
tional assumptions about the phase induced by the object are
to be made (for example, phase derivative continuity,
boundary conditions efc.) in order to perform the phase/
amplitude reconstruction. To avoid the non-uniqueness
problem, an appropriate working point at one of the rocking-
curve slopes is usually chosen, such that only one slope of the
rocking curve contributes to the formation of the whole image.
This condition can be strongly violated in the case of a non-flat
wavefront of the incident wave. Then, for some points in the
image, both slopes of the rocking curve could contribute. Thus,
the non-uniqueness problem mentioned above arises again. In
the real experiment, one does not know a priori whether or
not the ‘one-slope’ condition is fulfilled. Below, we present an
alternative approach to the phase reconstruction based on
the geometrical optics approximation which guarantees the
uniqueness of the phase reconstruction and resolves the
incident non-flatness problem.

4. Multi-image approach to the ABI

An alternative approach to the phase reconstruction in ABI
is considered below. It is based on the geometrical optics
approximation and consists of measuring a series of images
corresponding to different deviations of the analyser crystal. It
should be mentioned here that the relative positions of the
analyser crystal rather than absolute positions are assumed to
be known. Therefore, the offset of the analyser deviation is
arbitrary, but the angular distances between the analyser
positions have to be precisely measured.

Let 6, designate the analyser deviation for the ith
measurement in the series of N measurements. The corre-

sponding images in the presence of the object and in its
absence are denoted by I;(x,y) and I,/“(x, y), respectively. If
the validity conditions of the geometrical optics approxima-
tion are satisfied, then the angular dependence of the intensity
at an arbitrary point of the image should reproduce the
rocking curve of the analyser crystal. Owing to the non-flat-
ness of the wavefront incident on the analyser, the angular
distributions corresponding to different points in the image
are shifted with respect to each other. These shifts contain
information about the phase derivative of the wave incident
on the analyser and allow one to reconstruct the phase
derivative and, given the boundary conditions, the phase itself.

In order to extract the qualitative information about phase
and intensity distribution in the wave incident on the analyser
crystal, we approximate the angular distribution for each point
in the image with some function using a least-squares mini-
mization procedure. In the following, we use a Gaussian
distribution, which is a good choice for approximation of
typical experimental rocking curves,

1(6: x, y) = c(x, y) + A(x, y) exp{—[68 — 6.(c, ) /[2w*(x, )]}

(19)
The inclusion of the offset c(x, y) allows better modelling of
the rocking curves at their tails. Given the maps of the coef-
ficients of the approximating function (19) as functions of the
(x,y) position in the images with and without the object, the

following distributions are then calculated.
1. ‘Average absorption’, defined as the ratio

(D, )/ ) (x, y)
= {c(x, ) + 2m)"*w(x, y)A(x, y)}
x {c™(x, y) + @m)' Pw ™ (x, »)A™ (x, y)} !
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Figure 3

(a)—(d) Cross sections of four parametric images of object 1 calculated using the multi-image approach to the simulated images presented in Fig. 2(a).
(e) Cross section of the phase map obtained by integration of the ‘deflection angle’ map presented in (c).
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2. Refraction defined the difference

QC(X, y) - efF(x’ y)
3. ‘Maximum absorption’, defined as the ratio

angle, as

L, /17 (x, y) = {c(x, y) + ACe, )}/ (x, y) + AT (x, y)}.

4. ‘Small-angle-scattering variance’, defined as the differ-
ence w(x, y) — (W) (x, y).

4.1. Phase reconstruction using the multi-image approach.
Simulated data

We have calculated four maps (‘average absorption’,
‘maximum absorption’, ‘deflection angle’ and ‘SAXS
variance’) for the simulated images (see §3) using the multi-
image approach, equation (19). The results for object 1 are
presented in Figs. 3(a)-(d). By numerical integration of the
‘deflection-angle’ distribution, the corresponding phase
distribution has been reconstructed. This is shown in Fig. 3(e).
Analysis of Fig. 3(a), where the solid line represents the
‘average-absorption’ distribution and the dashed line repre-
sents the exact intensity attenuation due to the object, shows
that the multi-image approach based on the Gaussian
approximation of the local rocking curves gives accurate
reconstruction of the attenuation function except for the
cylinder edges. Near the edges, the reconstruction gives
anomalously large attenuation (intensity gaps). These gaps are
sometimes interpreted as the result of ‘extinction’ contrast in
the images due to small-angle scattering. In fact, the actual
source of these gaps in the reconstructed intensity is in the
violation of the geometrical optics approximation (as well as
the weak-object approximation, or any other approximation,
such as e.g. DEI, which is based on the GO or WO approxi-
mations) in the vicinity of edges of cylindrical objects (and in
any other regions with a rapid change of the projected

reconstructed 0.08 )

- - —exact 0.06 [
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0.02 4
0.00+4

'Average absorption'

&

1=

]
h

Deflection angle, steps

-0.04 4

A 1

1.00+

refractive index). Therefore, the use of any technique based
on the GO or the WO approximation for quantitative inter-
pretation of these intensity gaps cannot be justified.

Fig. 3(b) shows the ‘maximum-absorption’ contrast. In
theory, it should provide the pure absorption contrast due to
the object. However, strong artefacts are clearly seen in the
figure and the reconstructed profile disagrees significantly with
the exact absorption profile. We attribute this behaviour to the
local failure of the geometrical optics approximation for the
object under investigation.

Fig. 3(c) presents the deflection angle profile together with
the exact one. We have integrated this profile in order to
obtain the phase distribution (Fig. 3e). Analysis of the phase
profile shows that the multi-image approach gives a satisfac-
tory result but slightly disagrees with the exact phase profile.
We relate this discrepancy to the failure of the geometrical
optics approximation for the object.

The local rocking-curve broadening shown in Fig. 3(d) is
usually related to the small-angle scattering at very small
features of the object. We used a cylinder with a smooth
surface in our calculations and we did not take into account
any small angular scattering in our simulations. We attribute
the broadening of the local rocking curves to the failure of the
geometrical optics approximation.

In order to prove our hypothesis (the failure of the
geometrical optics approximation for the considered object)
about the origin of the strong artefacts in the calculated maps
of ‘average’ and ‘maximum’ intensities and rocking-curve
broadening, we performed the same calculations for object 2.
The corresponding cross sections of the four parametric
images of the object are shown in Figs. 4(a)—(d). Fig. 4(e)
presents the reconstructed phase profile together with the
exact one. The ‘average’ absorption distribution reproduces
the exact profile with high accuracy. The same is true for the
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Table 3
Chemical formulae and densities of the materials of the fibres.

Material Chemical formula Density (g cm ™)
Nylon C1HN,0, 1.14

PTFE CF, 213

Kevlar C14H;)N,O, 1.44

Table 4

Optical parameters (real and imaginary parts of the refractive-index
decrement, 6 and B, respectively, the linear phase shift and the linear
attenuation coefficient, ¢ and u, respectively, referred to vacuum) at the
X-ray energy 25 keV for the fibre materials used in the experiment.

Material ~ § B e (mm™) pw(m™) 88

Nylon 0.4148x107°  1.4089x107'°  —52.55 0.357 2944
PTFE 0.6792x107°  42187x107"°  —86.05 1.069 1610
Kevlar 0.4977x107%  1.7404x107°  —63.06 0.441 2860

‘maximum’ absorption distribution. The latter is in excellent
agreement with the exact profile. The ‘SAXS variance’ profile
shown in Fig. 4(d) has peaks at the edges of the cylinder.
However, these are two orders of magnitude smaller
compared to the values obtained for object 1. The recon-
structed phase profile reproduces the shape of the exact phase
distribution although the magnitude of the reconstructed
profile is smaller than that of the exact one.

4.2. Application of the multi-image approach to the experi-
mental images

The experiment was performed at the ID19 beamline of the
European Synchrotron Radiation Facility (ESRF, Grenoble,
France) and the schematic diagram of the experimental set-up
is presented in Fig. 1. The X-ray source used was an 11-pole
variable-field wiggler with tunable photon energy 6-100 ke V.
The source-to-object distance was about 145 m and object-to-
detector distance was 0.2m. A fixed-exit double-crystal
Si(111) monochromator and single-crystal Si(111) analyser
were both operating in symmetric Bragg geometry in the
vertical plane. The experimental data were acquired using
25 keV X-rays. The measured analyser rocking-curve width
(FWHM) was 14.5 prad and the angular interval between the
analyser positions was 2.8 prad. More details of the experi-
ment can be found in Coan et al. (2005).

We have applied the weak-object approximation and the
multi-image approach to the experimental images of the set of
four fibres together with the corresponding flat-field images
collected at 13 equidistant deviation angles of the analyser.
The parameters of the fibres are given below:

—nylon fibre: diameter = 350 um;

— PTFE (Teflon) fibre: diameter = 260 pm;

— kevlar fibre: diameter = 100 pm;

—kevlar fibre: diameter = 16.7 pm.

The chemical formulae and densities of the materials of the
fibres and their optical properties at the X-ray energy 25 keV
are given in Table 3 and Table 4, respectively.

The first problem that arises immediately in the processing
of the raw experimental images is the non-uniformity
(curvature) of the wavefront incident on the object. This
results in the appearance of artefacts in the images normalized
by the corresponding flat-field images. As an example, Figs.
5(a), (¢), (e) present three normalized experimental images
corresponding to deviation angles of the analyser of —2.8, 0
and +2.8 prad. One such artefact is the broad strip clearly
visible in Fig. 5(c) and 5(e). Moreover, the contrast in each
image changes slowly with position in the image in both
directions. This can be explained by the fact that even in the
absence of an object the non-uniformity of the incident
wavefront results in different angles of incidence of X-rays at
different points of the analyser, i.e. the local deviation angle of
the analyser which defines the contrast is not constant but
slowly varying along the analyser surface.

(a) (h)

(e) )

Figure 5

Normalized experimental images of a set of fibres for three deviation
angles of the analyser: —2.8 prad (a) and (b), O prad (¢) and (d), and
+2.8 urad (e) and (f); before (a), (c), (e) and after (b), (d), (f) the
correction for the incident wavefront non-uniformity.
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We have already pointed out that the phase reconstruction
algorithm based on the weak-object approximation cannot be
directly applied to such images and the correction of the
images for the incident wavefront curvature is needed. Two
methods for such a correction have been described in §3. Here
we applied the second approach based on interpolation of the
local angular intensity distributions of the images with and
without objects using a Gaussian function, equation (19). First,
we obtained the maps of eight interpolation coefficients using
13 images with objects and 13 flat-field images. These maps
have the same size, 1024 by 1024 pixels, as the original images.
Using these maps, we then synthesized 13 images of the
objects and 13 flat-field images corresponding to 13 values of
the deviation angle 6 of the analyser in each pixel, namely,
+16.8, £14.0, £11.2, 8.4, £5.6, 2.8 and 0 prad. Given these
images, we calculated 13 normalized images of the objects.
Three of them, for £2.8 and 0 prad deviations of the analyser,
are presented in Figs. 5(b), (d), (f). All these images are free
from the artefacts observed in the original images and, unlike
the latter, have uniform contrast over the whole field of view.

As the sample consists of fibres of different materials, it
cannot be treated as a homogeneous object (§/f ratios are
different for different materials, see Table 4). We have
implemented a WO-based algorithm described in our earlier
paper (Nesterets et al., 2004). It requires two images collected
at different deviation angles of the analyser in order to
reconstruct both phase ¢ and attenuation function u of the

=

g

Z,

A —— WO -2.8 prad & +2.8 prad
o —— WO -5.6 yirad & +5.6 yrad
-15 —— WO -8.4 prad & +8.4 prad

18 Multi-image approach
0 2000 4000 6000
X, pm
(a)
0.06 4
0.034
0.004
H-0.034
-0.064 —— WO -2.8 prad & +2.8 prad
WO -5.6 prad & +5.6 prad
-0.094 —— WO -8.4 prad & +8.4 prad
0124 Multi-image approach
0 2000 4000 6000
X, pm

(b)

Figure 6

Results of the phase and attenuation function reconstruction for the set
of four fibres using the weak-object approximation applied to the pairs of
experimental images: +2.8 purad (black), £5.6 prad (red) and 8.4 purad
(blue). Green lines represent the results of reconstruction using the multi-
image approach applied to the total set of 13 experimental images of the
object and 13 flat-field images.

object transmission function g. We applied this algorithm to
three pairs of images corresponding respectively to £2.8, +5.6
and +8.4 prad. The results of the reconstructions are
presented in Fig. 6. Analysis of the phase and attenuation
profiles shows that these are different for different pairs of
images. The maximum phase values for each of the four fibres
differ significantly, see Fig. 6(a). For example, the maximum of
the reconstructed phase of the Nylon fibre (the leftmost one in
Fig. 6) is about —15.5rad for the reconstruction using
+2.8 purad images, —20 rad for 5.6 prad images and —15 rad
for £8.4 prad images. For comparison, according to Table 4,
the expected theoretical value of the maximum phase shift for
a Nylon fibre of 350 um diameter at 25 keV is approximately
—18.4 rad. Such a large difference in the reconstructed phase
values was observed earlier in §3 using numerically simulated
images. This is an explicit indication that the validity condi-
tions of the weak-object approximation are violated for the
objects under investigation. Analysis of Fig. 6(b) gives us
another confirmation of this conclusion. Indeed, the attenua-
tion function exhibits strong artefacts near the edges of the
fibres. Moreover, these artefacts have different signs for
different reconstructions.

Finally, we have applied the multi-image approach to the
experimental images. We used the maps of parameters of the
Gaussian interpolation function, equation (19), and calculated
four maps as described at the beginning of this section. The
results of the reconstruction are presented in Fig. 7. Fig. 7(a)
shows the ‘average-absorption’ image of the fibres. The
‘maximum-absorption’ image in Fig. 7(b) contains strong
‘edge’ artefacts and this implicitly indicates that the validity

(d)

Figure 7

Parametric images of the set of four fibres calculated using the multi-
image approach applied to the total set of 13 experimental images of the
object and 13 flat-field images.

306

Ya. I. Nesterets et al. = Analyser-based imaging

Acta Cryst. (2006). A62, 296-308



research papers

conditions for the objects under investigation are violated. A
cross section of the corresponding distribution of the
attenuation function p is shown in Fig. 6(b). The deflection
angle map, Fig. 7(c), looks very smooth and it does not contain
noise and artefacts characteristic to the raw images. A cross
section of the phase map obtained by proper integration of the
deflection angle map is also shown in Fig. 6(a). Finally, the
‘SAXS’ map in Fig. 7(d) reveals strong peaks at the edges of
the fibres.

These results confirm that the use of the proposed multi-
image approach allows one to successfully compensate for the
effect of incident wavefront curvature. However, the violation
of the validity conditions of the geometrical optics and the
weak-object approximations cannot be overcome within the
considered approach. As follows from Fig. 7, the reconstructed
average and maximum absorption maps as well as the rocking-
curve-broadening map contain artefacts near the edges of the
cylinders. This fact and the results of our numerical simula-
tions and reconstructions presented in §§3 and 4.1 allow us to
conclude that the objects under investigation do not satisfy the
validity conditions of the geometrical optics approximation.
Thus the reconstructed phase distribution has qualitative
rather than quantitative character. Unlike the simulated
images, the error of the reconstructions cannot be estimated
for the experimental data. However, comparison of the
reconstructed phase with the phase calculated using the
theoretical values for the optical constants and diameters of
the cylinders allows us to conclude that the reconstructed
phase is smaller than the theoretical one. This is in agreement
with the results obtained in §4.1 for simulated images.

5. Conclusions

We have performed a detailed analysis of the theoretical and
practical aspects of analyser-based phase-contrast imaging.
The main outcomes of this analysis can be briefly summarized
as follows.

The theoretical base for the phase/amplitude reconstruction
has been re-examined and extended. In particular, using
rigorous wave-optical formalism, a general expression, equa-
tions (4)—(6), for the intensity in the image formed in the
combined analyser-based/propagation-based phase-contrast
imaging has been derived. Unlike the previous theoretical
considerations in Pavlov et al. (2004) and elsewhere which
assumed a monochromatic plane incident wave, the results of
this paper describe an image formation in the case of partially
coherent radiation incident on the object.

In order to solve the corresponding inverse problem of
complex object wave reconstruction, the general expression
(4) for the intensity distribution in the image has to be
inverted with respect to the object transmission function. In
general, such a solution is quite problematic unless the non-
linear integral equation (4) is simplified. Two approaches
leading to significant simplification of equation (4) and
allowing its inversion with respect to the object transmission
function have been considered in this paper. The first
approach is the new quasi-monochromatic form of the

geometrical optics approximation for ABI, which is based on
the linearization of the transfer function of the imaging system
resulting in equation (9) in the case of a quasi-monochromatic
plane X-ray wave incident on the object and a perfect
detector. Validity condition (11) of the geometrical optics
approximation has been formulated which imposes simulta-
neous restrictions on the curvature of the transfer function of
the imaging system and on the smoothness of the transmission
function of the object. The second approach, the so-called
weak-object approximation, consists of linearization of the
object transmission function. It was investigated earlier by
Nesterets et al. (2005) and follows immediately from the
general expression (4) of this paper if the appropriate condi-
tions on the phase and attenuation induced by the object are
satisfied. The violation of the formulated validity conditions of
the geometrical optics or the weak-object approximations
leads to the appearance of artefacts in the reconstructed
distributions of the phase and amplitude of the object wave. In
practice, such artefacts are usually most noticeable near the
edges of strongly scattering objects, where the projected X-ray
refractive index changes rapidly as a function of transverse
position. Such artefacts are sometimes incorrectly attributed
to small-angle scattering.

Another problem arising due to the imperfections of the
imaging system, namely the non-uniformity of the wavefront
of the incident wave, has been investigated in this paper.
Unlike the non-uniformity of the incident-intensity distribu-
tion, this wavefront non-uniformity cannot be compensated
for by normalization of the images of the objects with the help
of the corresponding flat-field images, and results in additional
difficulties in the solution of the phase/amplitude reconstruc-
tion problem. A method for correction of the images for the
non-uniformity of the incident wavefront has been developed.
It is based on the geometrical optics approximation and
consists in measuring a series of images corresponding to a
sufficiently wide range of analyser deviation angles spanning
the whole reflectivity curve. This multi-image approach allows
one to obtain parametric maps of the object properties such as
‘average absorption’, ‘maximum absorption’, ‘deflection
angle’ and ‘small-angle-scattering variance’ and thus solves
the phase/amplitude reconstruction problem.

The developed approaches (WO, GO and multi-image
approaches) have been applied to the reconstruction of the
simulated as well as the experimental images of fibre objects.
In agreement with the preceding theoretical analysis, it was
shown that, if the validity conditions of the geometrical optics
or weak-object approximation are not satisfied, strong arte-
facts appear near the edges of the objects in the intensity
distributions obtained by using reconstruction algorithms
based on either approximation and the results of the recon-
struction of the phase and amplitude are in general qualita-
tively incorrect. Within the image regions where the relevant
validity conditions were satisfied, the developed methods
allowed us to successfully compensate for the curvature of the
incident wavefront and reconstruct the desired maps of the
object properties which were free from the artefacts induced
by the aberrations of the incident wavefront.
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